Théorème de Rolle

Théorème 1. Théorème de Rolle.

Étant donné des réel a et b tels que a < b ainsi qu'une fonction :

- continue sur [a, b]
- dérivable sur]a,b[
- telle que f(a) = f(b)

alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Définition 1. Soit $f: I \to \mathbb{R}$ une fonction et $x_0 \in I$.

On dit que f a un maximum local en x_0 si $\exists \alpha > 0 : \forall x \in]x_0 - \alpha, x_0 + \alpha[\cap I, f(x) \leq f(x_0)]$.

Exercice 1. Soit f la fonction définie sur [-2,1] par $f(x)=x^2+x-2$.

- 1. Vérifier que le théorème de Rolle peut s'appliquer à f.
- 2. Trouver le réel c qui satisfait la conclusion du théorème.

Exercice 2. Trouver les points critiques de $x \mapsto \frac{3x^2 - 5x - 1}{x - 2}$.

Exercice 3. Soit P un polynôme de degré n à coefficients réels qui possède n racines réelles distinctes. Montrer que P' possède n-1 racines réelles distinctes.

Exercice 4. Soit f une fonction définie sur [a,b] (a < b), dérivable sur [a,b]. On suppose que f(a) = f(b) et f'(a) = 0. Montrer que :

$$\exists c \in]a, b[: f'(c) = \frac{f(c) - f(a)}{c - a}$$

Exercice 5. Soit $f : [a; b] \to \mathbb{R}$ une fonction (a < b). Soit $x_0 \in]a; b[$. On suppose que f est dérivable en x_0 et que f a un maximum local en x_0 .

- 1. Rappeler la définition de $f'(x_0)$.
- 2. Rappeler la définition de : f a un maximum local en x_0 .
- 3. Prouver que $f'(x_0) \geq 0$.
- 4. Prouver que $f'(x_0) \leq 0$.
- 5. Conclure.
- 6. Que dire si f a un minium local en x_0 ?

Exercice 6. Preuve du théorème de Rolle.

Soit $f:[a,b] \to \mathbb{R}$ (a < b). On suppose que f est continue sur [a,b] et que f(a) = f(b).

1. Prouver qu'il existe $x_0 \in]a, b[$ tel que f a un extremum local en x_0 (utiliser le théorème des valeurs intermédiaires : l'image d'un intervalle fermé borné est un intervalle fermé borné).

On suppose de plus que f est dérivable sur [a, b[.

- 2. Prouver que $f'(x_0) = 0$.
- 3. Conclure.

Exercice 7. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x-1}{x^2+1}$.

- 1. Etudier la dérivabilité de f sur son ensemble de définition et calculer sa fonction dérivée.
- 2. Déterminer les points critiques de f.

Théorème des accroissements finis

Théorème 2. Théorème (ou égalité) des accroissements finis.

Étant donné des réel a et b tels que a < b ainsi qu'une fonction :

- continue sur [a,b]
- dérivable sur a, b

alors il existe $c \in]a, b[$ tel que f(b) - f(a) = (b - a)f'(c).

Exercice 8. Soit f une fonction dérivable sur [1,4] telle que $\frac{1}{2} \le f'(x) \le \frac{3}{2}$. Donner un encadrement de f(4) - f(1).

Exercice 9. Donner un encadrement de $\sqrt[3]{1001}$.

Exercice 10. Soit $x \in [0, \frac{\pi}{2}]$, montrer les inégalités :

$$\frac{2}{\pi}x \le \sin(x) \le x$$

Exercice 11. Étudier les variations de $x \mapsto sin(x) - x + \frac{x^3}{6}$.

Exercice 12. Soit f une fonction définie sur [a,b] (a < b). On suppose que f est dérivable sur [a,b] et que $\forall x \in$ $|a, b|, f'(x) \ge 0.$

- 1. Rappeler la définition de la croissance d'une fonction.
- 2. Prouver que f est croissante (utiliser l'égalité des accroissements finis).

Exercice 13. Preuve de l'égalité des accroissements finis.

Soit f une fonction définie sur [a,b] (a < b), dérivable sur [a,b]. Soit (D) la droite passant par les points (a,f(a)) et (b, f(b)). (D) a pour équation y = mx + p.

- 1. Illustrer la situation.
- 2. Trouver m et p.
- 3. Justifier que le théorème de Rolle est applicable à la fonction q définie par q(x) = f(x) (mx + p).
- 4. Appliquer le théorème de Rolle à g et conclure.

Exercice 14. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ la fonction définie par $f(x) = \ln(x)$.

- 1. Soit $c \in \mathbb{R}_+^*$. Calculer f'(c).
- 2. a. Soit $x \ge \text{et } c \in [1; \sqrt{x}]$. Encadrer f'(c).
- 2. b. Ecrire l'inégalité des accroissement fini sur $[1; \sqrt{x}]$.
- 3. En déduire un encadrement de f(x) f(1). 4. En déduire un encadrement de $\frac{\ln(x)}{x}$ puis $\lim_{x \to +\infty} \frac{\ln(x)}{x}$

Proposition 1. Règle de l'Hôpital.

Soient $f, g: [a; b] \to \mathbb{R}$ deux fonctions continues sur [a; b], dérivables sur [a; b]. On suppose que g' ne s'annule pas sur [a; b] et que $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l$. Alors $\lim_{x \to a^+} \frac{f(x) - f(a)}{g(x) - g(a)} = l$.

Exercice 15. Le but de cet exercice est de démontrer la règle de l'Hôpital.

- 1. Prouver que $\forall x \in]a; b[, g(x) \neq g(a)$ (raisonner par l'absurde).
- 2. Soit $p = \frac{f(b) f(a)}{g(b) g(a)}$ et $h : [a; b] \to \mathbb{R}$ la fonction définie par h(x) = f(x) pg(x). A l'aide du théorème de Rolle, montrer que $: \exists c \in]a; b[: \frac{f(b) f(a)}{g(b) g(a)} = \frac{f'(c)}{g'(c)}$.

 3. On suppose que $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l$. Prouver que $\lim_{x \to a^+} \frac{f(x) f(a)}{g(x) g(a)} = l$.

Exercice 16. Calculer $\lim_{x\to -1^+} \frac{\arccos x - \pi}{\sqrt{1-x^2}}$.

Exercice 17. Inégalité des accroissements finis.

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue. On suppose que f est dérivable sur [a;b] et que $\exists M\in\mathbb{R}: \forall x\in]a;b[,|f'(x)|\leq M$.

- 1. Ecrire l'égalité des accroissements finis.
- 2. En déduire que $|f(b) f(a)| \le M|b a|$.