Introduction aux suites numériques

Exercice 1. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}, u_n = \frac{2n+5}{n+3}$.

- 1. Trouver un minorant et un majorant pour (u_n) .
- 2. Etudier la monotonie de la suite (u_n) .

Exercice 2. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, u_n=\frac{2n-5}{10n-24}$.

- 1. La suite est-elle bornée?
- 2. La suite est-elle monotone?

Exercice 3. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}^*, u_n = \frac{n+1}{2n+\sin n}$.

- 1. Prouver que (u_n) est minorée par $\frac{1}{2}$.
- 2. Montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que $\forall n \leq n_0, u_n < \frac{1}{2} + \frac{1}{n}$.
- 3. En déduire que la suite (u_n) converge et préciser sa limite.

Exercice 4. On considère la suite définie par récurrence par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \ln(1 + u_n)$.

- 1. Prouver que (u_n) est minorée.
- 2. Etudier la monotonie de la suite (u_n) .

Exercice 5. Quelle est la différence entre $(u_n)_{n\in\mathbb{N}}$ et u_n ?

Exercice 6. Soient (u_n) , (v_n) et (w_n) trois suites définies par $u_n = \frac{(n-2)^2}{2}$, $v_n = (-1)^n$ et $w_n = u_n v_n$, pour tout $n \in \mathbb{N}$.

- 1. Représenter graphiquement ces trois suites.
- 2. Calculer v_0 , v_2 . Calculer v_{2n} .
- 3. Calculer v_1 , v_3 . Calculer v_{2p+1} .
- 4. Calculer w_{2p} et w_{2p+1} .

Exercice 7. 1. Rappeler la définition de la croissance d'une suite.

2. Donner deux critères permettant d'étudier la croissance d'une suite.

Exercice 8. Soient $u_n = (\frac{3}{2})^n$ et $v_n = (-2)^n$.

- 1. Prouver que (u_n) est croissante.
- 2. (v_n) est-elle croissante? Décroissante?
- 3. Soit $a \in \mathbb{R}$. A quelle condition (a^n) est-elle croissante? Décroissante?

Exercice 9. Le produit de deux suites minorées est-il minoré?

Exercice 10. Prouver qu'une suite réelle croissante est minorée.

Exercice 11. Soit (u_n) la suite définie pour $n \in \mathbb{N}$ par $u_n = \frac{n+1}{2n^2+3}$

- 1. Déterminer un majorant et un minorant de cette suite. La suite (u_n) est-elle bornée?
- 2. Étudier la monotonie de (u_n) .

Limites d'une suite numérique

Exercice 12. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{10}{n}$, pour tout $n\in\mathbb{N}$.

- 1. Représenter $(u_n)_{n\in\mathbb{N}}$ graphiquement.
- 2. Soit $\epsilon = 1$. Trouver N_1 tel que $\forall n \in \mathbb{N}, n \geq N_1 \Rightarrow -1 \leq u_n \leq 1$.
- 3. Soit $\epsilon = 0.1$. Trouver $N_{0.1}$ tel que $\forall n \in \mathbb{N}, n \geq N_{0.1} \Rightarrow -0.1 \leq u_n \leq 0.1$.
- 4. Recommencer avec $\epsilon = 0.01$ puis avec ϵ quelconque.
- 5. Conclure.

Exercice 13. Étudier les limites des suites définies par :

- 1. $u_n = \frac{\sin(n^2)}{n}$ 2. $u_n = \frac{a^n b^n}{a^n + b^n}$, $a \in \mathbb{R}_+^*$, $b \in \mathbb{R}_+^*$. 3. $u_n = \frac{n^3 + 4n}{4n^3 + 2\cos(n) \frac{2}{n^2}}$ 4. $u_n = \frac{2n + (-1)^n}{5n + (-1)^n}$

Exercice 14. A l'aide d'un encadrement, montrer que la suite

$$u_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

est convergente et donner sa limite.

Exercice 15. Montrer que pour tout $n \in \mathbb{N}$, on a $\sqrt{n+1} - \sqrt{n} \leq \frac{1}{2\sqrt{n}}$. En déduire le comportement de la suite de terme général

$$u_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$

Exercice 16. Trouver deux suites (u_n) et (v_n) qui tendent toutes les deux vers $+\infty$ telles que :

- $1. \lim_{n \to +\infty} \frac{u_n}{v_n} = +\infty$
- 2. $\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$ 3. $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1 \text{ et } \lim_{n \to +\infty} u_n v_n = +\infty$

Exercice 17. Trouver deux suites (u_n) et (v_n) telles que :

- 1. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n v_n = +\infty$
- 2. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n v_n = 0$ 3. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n v_n = 1$

Exercice 18. Trouver deux suites (u_n) et (v_n) telles que :

- 1. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = +\infty$ et $\lim_{n \to +\infty} u_n v_n = +\infty$ 2. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = +\infty$ et $\lim_{n \to +\infty} u_n v_n = 0$ 3. $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = +\infty$ et $\lim_{n \to +\infty} u_n v_n = -\infty$

Exercice 19. Ou aimerait prouver que la suite $(\cos(n))$ n'a pas de limite. Supposons le contraire et appelons l la limite de cette suite.

- 1. Sans développer, donner la limite de la suite $(\cos(n+1))$.
- 2. Développer $\cos(n+1)$ à l'aide d'une formule de trigonométrie.
- 3. Déterminer $\lim_{n\to+\infty} \sin(n)$.
- 4. Obtenir une contradiction à l'aide de l'égalité trouvée en 2. puis conclure.

Exemples remarquables

Exercice 20. Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}$.

- 1. Calculer $(1-a)(1+a+a^2+...+a^n)$.
- 2. En déduire une formule pour $\sum_{k=0}^{n} a^{k}$.

Exercice 21. (v_n) est une suite géométrique de raison a et de premier terme $v_0 \in \mathbb{R}$.

- 1. Pour $k \in \mathbb{N}$, exprimer v_k en fonction de v_0 et de a.
- 2. Exprimer $v_0 + v_1 + ... + v_n$ en fonction de v_0 et de a.
- 3. A l'aide de l'exercice précédent, trouver une formule pour $v_0 + v_1 + ... + v_n$.

Exercice 22. On considère la suite où $a \in \mathbb{R}$.

- 1. Pour quelles valeurs de a cette suite converge-t-elle?
- 2. Pour quelles valeurs de a cette suite diverge-t-elle vers $+\infty$?
- 3. Pour quelles valeurs de a cette suite n'a-t-elle pas de limite?

Exercice 23. Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{3}u_n - 2$.

- 1. Trouver un réel l tel que la suite (v_n) définie, pour $n \in \mathbb{N}$, par $v_n = u_n l$ soit géométrique.
- 2. En déduire le comportement de (u_n) .

Exercice 24. Expliciter et déterminer la limite de la suite définie par $u_0 = 2$ et $\forall n \mathbb{N}, u_{n+1} = \frac{1}{4}u_n + 5$.

Exercice 25. On considère la suite $(w_n)_{n\in\mathbb{N}^*}$ définie par $v_n=0.123123...123$, où il y a n bloc "123" dans l'écriture décimale de v_n .

- 1. Donner l'écriture décimale de $\frac{123}{1000},\,\frac{123}{1000000},\,\frac{123}{100000000},$
- 2. Exprimer v_n comme somme des premiers termes d'une suite géométrique, dont précisera le premier terme et la raison.
- 3. Justifier que $(w_n)_{n\in\mathbb{N}^*}$ converge et donner sa limite.