Suites - Théorèmes de convergence

Théorème 1. Toute suite de réels croissante et majorée converge.

Théorème 2. Toute suite de réels décroissante et minorée converge.

Exercice 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et $u_{n+1}=\frac{1+u_n^3}{4}$.

- 1. Prouver que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 2. Prouver que $(u_n)_{n\in\mathbb{N}}$ est majorée par $\frac{1}{2}$.
- 3. Conclure.

Exercice 2. Trouver:

- 1. une suite de réels croissante qui ne converge pas
- 2. une suite de réels majorée qui ne converge pas

Exercice 3. Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$ où $f : \mathbb{R} \to \mathbb{R}$ est une fonction croissante.

- 1. On suppose que $u_0 < u_1$. Prouver que (u_n) est croissante.
- 2. On suppose que $u_0 > u_1$. Prouver que (u_n) est décroissante.
- 3. Applications:
- 3.1.1. $u_0 = \frac{1}{2}$ et $u_{n+1} = \sqrt{u_n}$. Étudier les variations de (u_n) .
- 3.1.2. Prouver que (u_n) est majorée par 1. Conclure.
- 3.2.1. $u_0 = 2$ et $u_{n+1} = \sqrt{u_n}$. Étudier les variations de (u_n) .
- 3.2.2. Prouver que (u_n) est minorée par 1. Conclure.

Exercice 4. On considère la suite définie par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = e^{u_n} - 2, \text{ pour } n \geq 0 \end{cases}$

- 1. Trouver f telle que $u_{n+1} = f(u_n)$.
- 2. Soit g la fonction définie par g(x) = f(x) x.
- 2.1. Dresser le tableau de variation de g.
- 2.2. Prouver qu'il existe $\alpha < 0$ et $\beta > 0$ tels que $g(\alpha) = g(\beta) = 0$.
- 2.3. En déduire le signe de g.
- 3. On suppose que (u_n) converge vers l.
- 3.1. Prouver que g(l) = 0.
- 3.2. En déduire les valeurs possibles pour l.
- 4. On suppose que $u_0 < u_1$. Prouver que (u_n) est strictement croissante.
- 5. Que dire si $u_0 > u_1$?
- 6. En utilisant la question 2.3, trouver pour quelles valeurs de u_0 on a $u_0 < u_1$ et pour quelles valeurs de u_0 on a $u_0 > u_1$.
- 7. On suppose que $u_0 < \alpha$.
- 7.1. Prouver que (u_n) est majorée par α .
- 7.2. Conclure.
- 8. On suppose que $\alpha < u_0 < \beta$.
- 8.1. Prouver que (u_n) est minorée par α .
- 8.2. Conclure.
- 9. On suppose que $u_0 > \beta$.
- 9.1. Prouver que (u_n) ne peut pas être majorée.
- 9.2. Conclure.
- 10. Représenter graphiquement l'étude précédente.

Suites adjacentes

Définition 1. On dit que les suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes si :

- $-(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante
- pour tout $n \ge 0$, $u_n \le v_n$
- $-\lim_{n\to+\infty}(v_n-u_n)=0$

Théorème 3. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites adjacentes, alors :

- $-(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent
- $-\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} v_n$

Exercice 5. Parmi les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ suivantes, préciser, en justifiant, lesquelles sont adjacentes :

1.
$$u_n = 1 - \frac{1}{n+1}$$
 et $v_n = 1 + \frac{1}{n^2+1}$
2. $u_n = -\frac{1}{n+1}$ et $v_n = 1 + \frac{1}{n!}$

2.
$$u_n = -\frac{1}{n+1}$$
 et $v_n = 1 + \frac{1}{n!}$

3.
$$u_n = \sum_{k=1}^{k=n} \frac{1}{k!}$$
 et $v_n = \sum_{k=1}^{k=n} \frac{1}{k!} + \frac{1}{n \cdot n!}$

Exercice 6. On considère les suites $(S_n)_{n\in\mathbb{N}^*}$ et $(T_n)_{n\in\mathbb{N}}^*$ définie par $S_n = \sum_{k=1}^n \frac{1}{k^2}$ et $T_n = \sum_{k=1}^n \frac{1}{k^2} + \frac{1}{n}$.

Prouver que les suites (S_n) et (T_n) sont adjacentes.

Exercice 7. Soit $x \in \mathbb{R}$. On considère les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par $u_n = \frac{E(x10^n)}{10^n}$ et $v_n = \frac{1 + E(x10^n)}{10^n}$.

- 1. On suppose que $x = \pi$. Calculer u_0, u_1, u_2, v_0, v_1 et v_2 .
- 2. Prouver que (u_n) est croissante.
- 3. Prouver que (v_n) est décroissante.
- 4. Prouver que (u_n) et (v_n) sont adjacentes.
- 5. Conclure.

Suites extraites

Définition 2. On dit que $(v_n)_{n\in\mathbb{N}}$ est une suite extraite (ou sous-suite) de $(u_n)_{n\in\mathbb{N}}$ si il existe une fonction $\phi:\mathbb{N}\to\mathbb{N}$, strictement croissante, telle que $\forall n \in \mathbb{N}, v_n = u_{\phi(n)}$.

Proposition 1. Si (u_n) est une suite qui converge vers l, alors toute suite extraite de (u_n) converge aussi vers l.

Théorème 4. Théorème de Bolzano-Weierstrass.

Toute suite bornée admet une suite extraite qui converge.

Exercice 8. Formuler la contraposée de la proposition 1.

Exercice 9. Soit (u_n) la suite définie par $u_n = (1 + (-1)^n)n$.

- 1. Calculer u_{2n} puis $\lim_{n\to+\infty} u_{2n}$.
- 2. Calculer u_{2n+1} puis $\lim_{n \to +\infty} u_{2n+1}$.
- 3. Que peut-on dire de (u_n) ?

Exercice 10. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$. Parmi les suites suivantes, préciser lesquelles sont extraites de la suite $(u_n)_{n\in\mathbb{N}}$; si la suite est extraite, préciser $\phi(n)$, si elle ne l'est pas justifier pourquoi :

- 1. $v_n = u_{2^n}$, pour tout $n \in \mathbb{N}$
- 2. $v_n = u_{n+1}$, pour tout $n \in \mathbb{N}$
- 3. $v_n = u_{\sqrt{n}}$, pour tout $n \in \mathbb{N}$
- 4. $v_n = u_{4n+3}$, pour tout $n \in \mathbb{N}$

Exercice 11. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \cos(\frac{n\pi}{3})$.

- 1. Représenter graphiquement cette suite.
- 2. Calculer u_{6n} , pour $n \in \mathbb{N}$.
- 3. Trouver 5 autres suites constantes, extraites de $(u_n)_{n\in\mathbb{N}}$

Exercice 12. On considère (u_n) , la suite définie par

$$u_n = \frac{5n^2 + \sin(n)}{3(n+2)^2 \cos(\frac{n\pi}{5})}$$

- 1. Calculer, puis étudier la limite de (u_{10n}) .
- 2. Prouver que (u_n) est divergente.

Exercice 13. Prouver que la suite $(\sin(n))$ a une suite extraite qui converge.