Suites récurrentes

Proposition 1. Soit $f: D_f \to \mathbb{R}$ une fonction. Soit $u_0 \in \mathbb{R}$. La relation $u_{n+1} = f(u_n)$, pour $n \in \mathbb{N}$, ne définie une suite récurrente que s'il existe un intervalle I, contenant u_0 , tel que $f(I) \subset I$.

Exercice 1. Parmi les relations suivantes préciser lesquelles permettent de définir une suite récurrente, préciser la fonction f en jeu ainsi que l'ensemble dans lequel u_0 peut être choisi.

1. $u_{n+1} = u_n^2$

4. $u_{n+1} = 4n^2 - 2n + 3$ 5. $u_{n+1} = \sqrt{u_n - 1}$

2. $u_{n+1} = \sin(n)$

3. $u_{n+1} = \sqrt{u_n + 1}$

6. $u_{n+1} = \cos(u_n)$

Proposition 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par $u_0\in\mathbb{R}$ et $u_{n+1}=f(u_n)$ où f est une fonction continue. Si $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, alors f(l)=l. Autrement dit, l est un point fixe de f.

Proposition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par $u_0\in\mathbb{R}$ et $u_{n+1}=f(u_n)$ où f est une fonction croissante.

Alors (u_n) est monotone :

- (u_n) est croissante si $u_0 \leq u_1$
- $-(u_n)$ est décroissante si $u_0 \ge u_1$

Exercice 2. On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $\begin{cases} u_0 \in \mathbb{R}_+ \\ u_{n+1} = u_n^2 \end{cases}$.

- 1. Déterminer f et donner ses variations.
- 2. Déterminer les points fixes de f. En déduire les limites possibles pour u.
- 3. Prouver que pour tout $n \in \mathbb{N}$, $u_n \geq 0$.
- 4. Étudier les variations de (u_n) en fonctions de u_0 .
- 5. En déduire le comportement de (u_n) en fonction de u_0 .
- 6. Représenter graphiquement la suite.

Exercice 3. On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{2u_n + 3} \end{cases}$.

- 1. Représenter graphiquement la suite.
- 2. Prouver que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 3$.
- 3. Prouver que la suite est strictement croissante.
- 4. Prouver que la suite est convergente et déterminer sa limite.

Exercice 4. Etudier la suite définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$.

Exercice 5. Etudier la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + u_n}$.

Exercice 6. On considère une fonction $f:[a;b] \to [a;b]$, où a et b sont deux réels tels que a < b. Soit u la suite définie par $u_0 \in [a; b]$ et $u_{n+1} = f(u_n)$, pour $n \ge 0$.

- 1. Prouver que u est bornée.
- 2. On suppose de plus que f est croissante. Prouver que (u_n) converge.

Exercice 7. On considère la suite (u_n) définie par $u_0 = a > 0$, $u_1 = b > 0$ et $\forall n \in \mathbb{N}, u_{n+2}u_n = u_{n+1}^2$.

- 1. Déterminer le terme général de la suite (u_n) .
- 2. A quelle condition (u_n) converge?

Proposition 4. Soit $f: D_f \subset \mathbb{R} \to \mathbb{R}$ une fonction décroissante et $\begin{cases} u_0 = 0 \\ u_{n+1} = f(u_n) \end{cases}$ une suite récurrente. On note

 $(v_n) = (u_{2n})$ la des termes pairs et $(w_n) = (u_{2n+1})$ la suite des termes impairs

- 1. $f \circ f$ est croissante.
- 2. (u_n) n'est pas monotone en général
- 3. (v_n) et (w_n) sont monotones et doivent être étudiées séparément

Exercice 8. Avec les notations de la proposition précédente, prouver que $v_{n+1} = (f \circ f)(v_n)$ et $w_{n+1} = (f \circ f)(w_n)$.

Exercice 9. On considère la suite $u=(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0\in[0;1]\\ u_{n+1}=(u_n-1)^2, n\geq 0 \end{cases}$

- 1. Étudier les variations de f, dresser son tableau de variations et tracer son graphe.
- 2. Prouver que f a un unique point fixe que l'on notera α .
- 3. Pour $u_0 = \frac{1}{4}$, calculer u_1, u_2 et u_3 .

Comme f est strictement décroissante, (u_n) n'est pas monotone. On doit donc étudier $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$ séparément.

- 4. Justifier que $v_{n+1} = (f \circ f)(v_n)$ et $w_{n+1} = (f \circ f)(w_n)$.
- 5. Calculer $(f \circ f)(x)$.
- 6. Trouver a et b tels que $(f \circ f)(x) x = x(x-1)(x^2 + ax + b)$.
- 7. En déduire les points fixes de $(f \circ f)(x)$.
- 8. Déterminer les intervalles stables par $(f \circ f)(x)$.
- 9. Prouver que (v_n) converge et donner sa limite.
- 10. Prouver que (w_n) converge et donner sa limite.
- 11. Conclure.

Exercice 10. On considère la suite $u = (u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in [0; 1]$ et $u_{n+1} = 1 - u_n^2$, pour tout $n \ge 0$. Étudier la suite (u_n) .

Exercice 11. Étudier la suite définie par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \cos(u_n) \end{cases}$.

Exercice 12. Calcul de la racine carrée d'un réel positif.

Soit a > 0 et $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_a(x) = x^2 - a$. La courbe représentative de f_a est notée C_a .

- 1. Tracer C_4 .
- 2. Pour tout $x \neq 0$, déterminer l'abscisse (notée $g_a(x)$) du point d'intersection de la tangente en x à C_a et l'axe des abscisses.
- 3. Prouver que la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = g_a(u_n)$ est bien définie.
- 4. Représenter graphiquement (pour a=4) les termes u_0 , u_1 et 2.
- 5. Prouver que la suite (u_n) est minorée par \sqrt{a} .
- 6. Prouver que (u_n) est décroissante.
- 7. En déduire que la suite (u_n) converge et donner sa limite.