Applications linéaires

Définition d'une application linéaire

Définition 1. Soit E et F deux \mathbb{R} -espaces vectoriels. On dit que la fonction $f: E \to F$ est **linéaire** si :

- $-\forall (u,v) \in E^2, f(u+v) = f(u) + f(v)$ (compatibilité de f avec les lois +)
- $-\forall \lambda \in \mathbb{R}, \forall u \in E, f(\lambda.u) = \lambda.f(u)$ (compatibilité avec les lois .)

Si E = F, on dit alors que f est un **endomorphisme** de E.

Exercice 1. Soit E et F deux \mathbb{R} -espaces vectoriels et $f: E \to F$ une fonction linéaire.

- 1. Prouver que $f(0_E) = 0_F$.
- 2. Prouver que $\forall u \in E, f(-u) = -f(u)$.

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ $(x,y,z) \mapsto (x+3y,-x+z)$. Prouver que f est linéaire.

Exercice 3. Prouver que $f: \mathbb{R} \to \mathbb{R}^3$ $x \mapsto (2x, -x, +\frac{x}{4})$ est linéaire.

Exercice 4. La fonction $f: \mathbb{R}^3 \to \mathbb{R}^3$ $(x,y,z) \mapsto (x+y+z,-x+y,y+2z^2)$ est-elle linéaire?

Exercice 5. Soit $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ $P(X) \mapsto 2P'(X)$

- 1. Quels sont les éléments de $\mathbb{R}_2[X]$?
- 2. Donner une base de $\mathbb{R}_2[X]$.

3. Prouver que f est un endomorphisme de $\mathbb{R}^2[X]$.

Exercice 6. Prouver que $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ est linéaire. $P(X) \mapsto P(0) - 2P'(X)$

Exercice 7. On note $\mathcal{C}(\mathbb{R})$ l'ensemble des fonctions continues définies sur \mathbb{R} .

Prouver que la fonction $\phi: \mathcal{C}(\mathbb{R}) \to \mathbb{R}$ $f \mapsto \int_0^1 f(t)dt$ est linéaire.

Exemples d'applications linéaires

Exercice 8. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ $(x,y,z) \mapsto (x+y+z,-x+y,y+2z)$. On note (i,j,k) la base canonique de \mathbb{R}^3 .

- 1. Prouver que f est linéaire.
- 2. Calculer f(i), f(j) et f(k). On écrira ces trois vecteurs en colonnes.

3. Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Calculer AX. Que constate-t-on?

Définition 2. Soit E un \mathbb{R} -espace vectoriel. Soit F et G deux sous-espaces vectoriels de E. On dit que F et G sont supplémentaires dans E, si :

$$\forall x \in E, \exists !(x_1, x_2) \in F \times G : x = x_1 + x_2$$

Dans ce cas, on note $E = F \oplus G$. On peut alors définir :

la projection sur F parallèlement à G: et la projection sur G parallèlement à F:

$$p: E \to E$$

$$x \mapsto x_1$$

$$q: E \to E$$

$$x \mapsto x_2$$

Proposition 1. Soit E un \mathbb{R} -espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E. Alors F et G sont supplémentaires dans E si, et seulement si :

- -dim(F) + dim(G) = dim(E)
- $-F \cap G = \{O_E\}$

Exercice 9. Soit $E = \mathbb{R}^2$, $F = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y - x = 0 \right\}$ et $G = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y + x = 0 \right\}$.

- 1. Prouver que F et G sont supplémentaires dans E.
- 3. Exprimer la projection sur G parallèlement à F.
 4. Représenter graphiquement ces deux projections 2. Exprimer la projection sur F parallèlement à G. 4. Représenter graphiquement ces deux projections.

Exercice 10. Soit $E = \mathbb{R}^3$, $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ 0 | \ x + y + z = 0 \right\}$ et $G = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ | \ x = y$ et $y = z \right\}$.

1. Déterminer $\dim(F)$ et $\dim(G)$.

- 3. Exprimer la projection sur F parallèlement à G.
- 2. Prouver que F et G sont supplémentaires dans E.
- 4. Exprimer la projection sur G parallèlement à F.

Définition 3. Soit $f: E \to F$ une fonction linéaire.

On appelle noyau de f, noté $\ker(f)$, l'ensemble des antécédents de 0 par f : $\ker(f) = \{x \in E | f(x) = 0\}$ On appelle **image** de f l'ensemble des $y \in F$ qui ont un antécédent par $f : \text{Im}(f) = \{y \in F | \exists x \in E : y = f(x)\}$

Exercice 11. Soit $f: E \to F$ une fonction linéaire.

- 1. Prouver que $\ker(f)$ est un sous-espace vectoriel de E.
- 2. Prouver que Im(f) est un sous-espace vectoriel de F.

Exercice 12. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (-2x+y,x-2y)$. On note (i,j) la base canonique de \mathbb{R}^2 .

1. Prouver que f est linéaire.

- 3. Déterminer $\ker(f)$.
- 2. Calculer, puis représenter f(i) et f(j).
- 4. Déterminer Im(f).

Exercice 13. Soit $f: \mathbb{R}_2[X] \to \mathbb{R}^3$ $P(X) \mapsto (P(1), P(\frac{1}{2}), P(2))$. On note (i, j, k) la base canonique de \mathbb{R}^3 .

- 1. Prouver que f est linéaire.
- 2. Déterminer $\ker(f)$.
- 3. Justifier que f est bijective.
- 4. Trouver trois polynômes P_1 , P_2 et P_3 tels que $f(P_1) = i$, $f(P_2) = j$ et $f(P_3) = k$. Comment s'appellent ces trois polynômes?

Rang d'une famille de vecteurs - Rang d'une matrice

Définition 4. Soit E un \mathbb{R} -espace vectoriel et $(x_1, x_2, ..., x_n)$ une famille de vecteurs de E. On appelle rang $(x_1, x_2, ..., x_n)$ la dimension de l'espace engendré par $(x_1, x_2, ..., x_n)$. On le note :

$$rq(x_1, x_2, ..., x_n) = \dim Vect(x_1, x_2, ..., x_n)$$

Définition 5. Le rang d'une matrice est le rang de ses vecteurs colonnes.

Proposition 2. Soit E un \mathbb{R} -espace vectoriel de dimension finie \mathbf{n} et $(x_1, x_2, ..., x_p)$ une famille de \mathbf{p} vecteurs de E. Alors:

- 1. $rg(x_1, x_2, ..., x_p) \leq p$
- 2. $rg(x_1, x_2, ..., x_p) \leq n$

- 3. $rg(x_1, x_2, ..., x_p) = n \Leftrightarrow (x_1, x_2, ..., x_p)$ est génératrice 4. $rg(x_1, x_2, ..., x_p) = p \Leftrightarrow (x_1, x_2, ..., x_p)$ est libre

Proposition 3. On ne change pas le rang d'une matrice en effectuant les opérations autorisées pour la méthode du pivot de Gauss.

Exercice 14. Déterminer le rang de la matrice

$$A = \left(\begin{array}{rrrr} 1 & 2 & -1 & 3 \\ 3 & 0 & 5 & -4 \\ -1 & -1 & -2 & 0 \end{array}\right)$$

Exercice 15. Dans $\mathbb{R}_4[X]$, on considère la famille $(P_1, P_2, \dots, P_{10})$ où $\forall k \in [1, 10], P_k = X^4 + kX^2 + (2k+1)$. Quel est le rang de cette famille?

Exercice 16. Déterminer le rang de la famille $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \\ -2 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 3 \\ 1 \\ 8 \end{pmatrix}$ de \mathbb{R}^4 .