Nombres premiers et congruences

Proposition 1. Décomposition en facteurs premiers.

Soient n un entier naturel supréieur ou égal à 2 et $p_1 < p_2 < ... < p_i < ...$ la suite de tous les nombres premiers $(p_1 = 2, p_2 = 3,...)$. Alors il existe une unique d'entiers naturels $(\alpha_i)_{i \geq 0}$ telle que $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_i^{\alpha_i} ...$

Exercice 1. Soit $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i} \dots$ et $m = p_1^{\beta_1} p_2^{\beta_2} \dots p_i^{\beta_i} \dots$ Trouver une formule pour $\operatorname{pgcd}(n, m)$ et une formule pour $\operatorname{ppcm}(n, m)$.

Nombres premiers

Exercice 2. Décomposer en facteurs premiers les nombres : 315, 312, 1225, 529. A l'aide de décompositions en facteurs premiers, calculer :

1. pgcd(45,12) et ppcm(45,12)

3. pgcd(3150,5880) et ppcm(3150,5880)

2. pgcd(91,28) et ppcm(91,28)

Exercice 3. Déterminer le nombre de diviseurs de 5880.

Exercice 4. Factoriser en produits de nombres premiers les nombres suivants :

1. 713 4. 28891

2. 1591 5. 1041541

3. 9991 6. Est-ce facile?

Exercice 5. Soit p un nombre premier. Déterminer le nombre de diviseurs de p^n .

Exercice 6. Soit n un entier natuel suprérieur ou égal à 2. On suppose que la décomposition de n en facteurs premiers est $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}$. Déterminer le nombre de diviseurs de n.

Exercice 7. Prouver par l'absurde qu'il existe une infinité de nombre premiers.

Exercice 8. Soit p un nombre premier. Prouver que $\sqrt{p} \notin \mathbb{Q}$.

Congruences

Exercice 9. Déterminer les congruences :

- 1. modulo 5 de 12, 45, 87, 104
- 2. modulo 7 de 14, 85, 24, 46
- 3. modulo 8 de 12, 204, 36, 48

Exercice 10. Montrer que $10^6 \equiv 1[7]$

Exercice 11. Trouver, en fonction de n, le plus petit entier naturel auquel est congru :

- $1. 2n^2 \text{ modulo } 5$
- $2. 3n 5 \mod 7$
- 3. $n^2 2n + 3 \mod 4$

Exercice 12. Prouver que pour tout $n \in \mathbb{N}$:

- 1. $5n^3 + n$ est divisible par 6
- 2. $n^7 n$ est divisible par 7
- 3. $3^{2n+1} + 2^{n+2}$ est divisible par 7

Exercice 13. Déterminer les restes de la division euclidienne de :

- $1.\ 12^{15},\ 10^7,\ 78^{15},\ 13^{12}\ \mathrm{par}\ 11$
- 2. 91234^{2016} par 7
- $3.\ 2^{55}$ par 7
- 4. 5^{789} par 12

Exercice 14. On note $\mathbb{Z}/5\mathbb{Z}$ l'ensemble des restes de la division euclidienne par 5.

- 1. Déterminer les éléments de $\mathbb{Z}/5\mathbb{Z}$.
- 2. Donner la table d'additionde $\mathbb{Z}/5\mathbb{Z}$.
- 3. Donner la table de multiplication de $\mathbb{Z}/5\mathbb{Z}$.

Exercice 15. On note $\mathbb{Z}/4\mathbb{Z}$ l'ensemble des restes de la division euclidienne par 4.

- 1. Déterminer les éléments de $\mathbb{Z}/4\mathbb{Z}$.
- 2. Donner les tables d'addition et de multiplication de $\mathbb{Z}/4\mathbb{Z}$.
- 3. Tous les éléments ont-ils un inverse pour la loi \times ?

Exercice 16. Soient a et n deux entiers naturels. Démontrer que :

- 1. $\exists b \in \mathbb{N} : ab \equiv 1[n] \Leftrightarrow \operatorname{pgcd}(a, n) = 1$
- 2. Quel nom donner à b?
- 3. Donner une méthode pour trouver b.

Exercice 17. Résoudre (dans \mathbb{N}):

- 1. $4x \equiv 1[11]$
- $2. \ 4x \equiv 2[5]$
- $3.\ 2x \equiv 8[10]$

Exercice 18. a et b sont deux entiers relatifs et n est un entier naturel non nul. Prouver que $a \equiv b[n] \Rightarrow a^n \equiv b^n[n^2]$.

Théorème 1. Petit théorème de Fermat.

Soit p un nombre premier et $n \in \mathbb{Z}$. Alors :

$$n^p \equiv n[p]$$

De plus, si n ne divise pas p, alors :

$$n^{p-1} \equiv 1[p]$$

Exercice 19. Soit p un nombre permier. Démontrer que pour tout $n \in \mathbb{N}$, $3^{n+p} - 3^{n+1}$ est divisible par p.

Exercice 20. Soit $n \in \mathbb{N}$. Prouver que 7 divise $3^{6n} - 1$:

- 1. en utilisant les congruences
- 2. en utilisant le petit théorème de Fermat

Exercice 21. Soit a un entier naturel non nul. Prouver que $a^{13} - a$ est divisible par 26.

Exercice 22. Soit a = 4.

- 1. Déterminer a^{-1} modulo 15.
- 2. Calculer a^{-2} , a^{-3} , a^{-4} ,...

Exercice 23. Vers le chiffrement RSA.

Soient p et q deux nombres premiers distincts. On pose n = pq. Soient m < n et k deux entiers naturels.

- 1. On suppose que p ne divise pas m. Prouver que $m^{1+k(p-1)(q-1)} \equiv m[p]$.
- 2. La formule est-elle valable si p divise m?
- 3. Prouver que $m^{1+k(p-1)(q-1)} \equiv m[n]$.