Espaces vectoriels

Définition 1. Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et E un ensemble muni d'une loi interne "+" et d'une loi externe "." définies par:

$$+: E \times E \rightarrow E$$

 $(u_1, u_2) \mapsto u_1 + u_2$ et $: K \times E \rightarrow E$
 $(\lambda, u) \mapsto \lambda.u$

On dit que (E, +, .) est un **espace vectoriel** sur \mathbb{K} , ou \mathbb{K} -espace vectoriel, ssi les propriétés suivantes sont vérifiées :

- 1. $\forall (u_1, u_2) \in E^2, u_1 + u_2 = u_2 + u_1 \ (commutativit\'{e} \ de \ la \ loi +)$
- 2. $\forall (u_1, u_2, u_3) \in E^3, u_1 + (u_2 + u_3) = (u_1 + u_2) + u_3 \text{ (associativit\'e de la loi +)}$
- 3. $\exists 0_E \in E : \forall u \in E, u + 0_E = u \ (0_E \ \'el\'ement \ neutre \ de +)$
- 4. $\forall u \in E, \exists u' \in E : u + u' = 0_E \ (u' \ est \ le \ symétrique \ de \ u, \ noté -u)$
- 5. $\forall u \in E, 1_{\mathbb{K}}.u = u$
- 6. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall u \in E, \lambda.(\mu.u) = (\lambda\mu).u$
- 7. $\forall \lambda \in \mathbb{K}, \forall (u_1, u_2) \in E^2, \lambda.(u_1 + u_2) = \lambda.u_1 + \lambda.u_2$
- 8. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall u \in E, (\lambda + \mu).u = \lambda.u + \mu.u$

Exercice 1. On se place dans le \mathbb{R} -espace vectoriel \mathbb{R}^2 .

- 1. Illustrer sur une figure les axiomes 1, 2, 3 et 4 à l'aide des vecteurs $u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $u_2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ et $u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- 2. Illustrer les axiomes 6, 7 et à l'aide des des vecteurs $u=u_1=\begin{pmatrix} 0\\1 \end{pmatrix}, u_2=\begin{pmatrix} 1\\3 \end{pmatrix}$ et des scalaires $\lambda=2$ et $\mu=3$.

Exercice 2. Soit E un \mathbb{R} -espace vectoriel. Soit $u \in E$ et $\lambda \in \mathbb{R}$. A l'aide des axiomes définissant un espace vectoriel, prouver les règles de calcul suivantes :

- 1. $0.u = 0_E$
- 2. $\lambda . 0_E = 0_E$
- 3. (-1).u = -u
- 4. $\lambda . u = 0_E \Leftrightarrow \lambda = 0$ ou $u = 0_E$

Exercice 3. On munit \mathbb{R}^2 de la loi $+_{\mathbb{R}^2}$ définie par $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} +_{\mathbb{R}^2} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ et de la loi $._{\mathbb{R}^2}$ définie, pour $\lambda \in \mathbb{R}$,

par $\lambda_{\mathbb{R}^2} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$. Soient $u = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, $v = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$, $\lambda = 4$ et $\mu = -1$. 1. Calculer $u +_{\mathbb{R}^2} v$, $\lambda_{\mathbb{R}^2} u$, $\mu_{\mathbb{R}^2} v$, $\lambda_{\mathbb{R}^2} u +_{\mathbb{R}^2} \mu_{\mathbb{R}^2} v$.

- 2. Déterminer -u et -v.
- 3. Prouver que $(\mathbb{R}^2, +_{\mathbb{R}^2}, \cdot_{\mathbb{R}^2})$ est un \mathbb{R} -espace vectoriel.

Exercice 4. (E, +, .) est un espace vectoriel sur \mathbb{R} . On note 0_E l'élément neutre pour +.

1. En utilisant certains axiomes des espaces vectoriels, prouver que 0_E est unique.

Soit $u \in E$ et $u' \in E$. On suppose que $u + u' = 0_E$.

2. Prouver que u' est unique.

Exercice 5. Soit $E = \mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. Prouver que E est un espace vectoriel sur \mathbb{R} .

Exercice 6. Soit $E = \{(x, y) \in \mathbb{R}^2 | 2x + y = 0\}$. Soient $u = (x, y) \in E$ et $v = (x', y') \in E$.

- 1. Prouver que $u + v \in E$.
- 2. Soit $\lambda \in \mathbb{R}$. Prouver que $\lambda u \in E$.
- 3. E est-il un espace vectoriel?

Exercise 7. Soit $E = \{(x, y, z) \in \mathbb{R}^3 | x + 3y - z = 0\}$. Soient $u = (x, y, z) \in E$ et $v = (x', y', z') \in E$.

- 1. Prouver que $u + v \in E$.
- 2. Soit $\lambda \in \mathbb{R}$. Prouver que $\lambda u \in E$.
- 3. E est-il un espace vectoriel?

Exercice 8. Soit $E = \{(x, y, z) \in \mathbb{R}^3 | -x + y - 3z = 0\}$. Prouver que E est un \mathbb{R} -espace vectoriel.

Exercice 9. Soit $E = \{(x,y) \in \mathbb{R}^2 | x + 3y - z = 2\}$. E est-il un espace vectoriel?

Exercice 10. Soit $E = \{(x, y) \in \mathbb{R}^2 | x - y^2 = 0\}$. E est-il un espace vectoriel?

Exercice 11. On note $\mathcal{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions définies sur \mathbb{R} à valeurs dans \mathbb{R} . On définit, pour $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, $g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $\lambda \in \mathbb{R}$, (f+g) par (f+g)(x) = f(x) + g(x) et (λf) par $(\lambda f)(x) = \lambda f(x)$, pour tout $x \in \mathbb{R}$. $\mathcal{F}(\mathbb{R}, \mathbb{R})$ est-il un \mathbb{R} -espace vectoriel?

Exercice 12. On considère l'équation différentielle y'' - 5y = 0. Prouver que l'ensemble des solutions réelles (à variable réelle) de cette equation est un \mathbb{R} -espace vectoriel.